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Abstract
Synergistic learning combining computational thinking (CT) and STEM has proven to be an effective method for advancing
learning and understanding in a number of STEM domains and simultaneously helping students develop important CT concepts
and practices. We adopt a design-based approach to develop, evaluate, and refine our Collaborative, Computational STEM
(C2STEM) learning environment. The system adopts a novel paradigm that combines visual model building with a domain-
specific modeling language (DSML) to scaffold learning of high school physics using a computational modeling approach. In
this paper, we discuss the design principles that guided the development of our open-ended learning environment (OELE) using a
learning-by-modeling and evidence-centered approach for curriculum and assessment design. Students learn by building models
that describe the motion of objects, and their learning is supported by scaffolded tasks and embedded formative assessments that
introduce them to physics and CT concepts. We have also developed preparation for future learning (PFL) assessments to study
students’ abilities to generalize and apply CT and science concepts and practices across problem solving tasks and domains. We
use mixed quantitative and qualitative analysis methods to analyze student learning during a semester-long study run in a high
school physics classroom. We document some of the lessons learned from this study and discuss directions for future work.
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Open-ended learning environment

Introduction

Computation is now considered to be the third pillar of science
and engineering disciplines, alongside theory and experimen-
tation (Wing 2016). Computing knowledge and skills provide
the foundation for modern competency in STEM (Science,
Technology, Engineering, andMath)-related fields, prompting
research on how to best prepare students for the 21st century
workforce and lifelong learning (Sengupta et al. 2013;
Weintrop et al. 2016). Exploiting the synergies between

science and computation can bring about a fundamental
change in the way that science learning occurs. In addition,
educators, researchers, and industry stakeholders now recog-
nize that students need to learn computational thinking (CT) to
become creators, and not just consumers of the next wave of
computing innovations (Schnabel 2011; Wing 2006). This
provides us with a unique and timely opportunity to develop
computer-based learning environments that leverage the syn-
ergies between STEM and computing education and bring a
learning-by-modeling and problem-solving approach to sup-
port learning with understanding that is active and engaging.

Conceptual learning of STEM and CT domains, indi-
vidually and in integrated settings, is often difficult for
learners (Román-González et al. 2017). While the intro-
duction to foundational programming constructs in high
school classrooms can be challenging, even in easy-to-
use, visual programming environments (Grover and Basu
2017), a subsequent integration of these constructs into
introductory STEM courses may further exacerbate diffi-
culties that students have when working in coupled do-
mains (Basu et al. 2016; Chi 2005). When building
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computational models, students find the behaviors of in-
dividual objects intuitive but struggle to understand their
relations with emergent phenomena, i.e., the aggregate
behavior generated by a group of objects (Chi 2005;
Wilensky and Resnick 1999). For example, students find
it hard to extrapolate elastic collisions of gas molecules at
the micro-level to macro-level properties of pressure and
temperature. In biology, students understand how animals
survive, grow, and reproduce in an environment, but find
it hard to go from individual behaviors to explain systems
level phenomena, such as evolution, natural selection, and
population dynamics. Students also have difficulties in
identifying relevant objects and their interactions, and in
extending their intuitive understanding of domain con-
cepts into a computational modeling framework (Basu
et al. 2016).

On the other hand, Harel and Papert (1990) have argued
that programming is reflexive with other domains, i.e., learn-
ing programming in concert with concepts from another do-
main can be easier than learning each separately. Others have
built on this argument to show that STEM + CT have similar
epistemic origins (Sengupta et al. 2013; Weintrop et al. 2016)
and that programming and computational modeling serve as
effective vehicles for learning challenging science and math
concepts (diSessa 2001; Hambrusch et al. 2009; Jona et al.
2014; Repenning et al. 2010; Sengupta et al. 2015).
Researchers contend that CT could be better inculcated if
taught in the context of or in connection with other domains
(Cooper and Cunningham 2010).

In our work, we apply a learning-by-modeling paradigm in
science classrooms. In particular, we adopt a design-based
research (DBR) approach (Barab and Squire 2004) to develop
Collaborative, Computational STEM (C2STEM)—an open-
ended learning environment (OELE) (Biswas et al. 2016) for
integrated learning of STEM + CT in high school physics
classes. We adopt an evidence-centered design (ECD) ap-
proach (Mislevy et al. 2017) to meet required curricular stan-
dards for the target domain (physics). While the explicit con-
struction of computational models is central to helping stu-
dents develop STEM + CT concepts and practices (Weintrop
et al. 2016), we use a step-by-step modeling approach (in
contrast to equation-based modeling) to help students better
understand system dynamics (Redish and Wilson 1993;
Sengupta et al. 2013). In addition, we leverage the affordances
of visual programming languages along with domain-specific
modeling languages (DSMLs) to facilitate and enhance syn-
ergistic STEM + CT learning. ECD-based formative assess-
ments provide additional support for learning, and preparation
for future learning (PFL) assessments (Bransford and
Schwartz 1999) are designed to study how students generalize
and apply problem-solving strategies in new situations.

This paper uses a mixed-methods approach to answer the
following research questions:

1. How does a principled design approach to our learning-
by-modeling framework implemented in the C2STEM
environment lead to learning of both STEM and CT con-
cepts? and

2. How does a qualitative analysis of students’ model-
building behaviors combined with embedded formative
assessments and summative PFL assessments provide ev-
idence of learning in physics and CT?

The remainder of this paper is organized as follows.
Section “Synergistic Learning of STEM and CT” provides
background on the role of CT and computational modeling
in STEM learning. Section “Design Principles and the
C2STEM System” discusses our design principles, process,
and implementation of the C2STEM environment. Sections
“Classroom Study” and “Results and Discussion” present ini-
tial results and case studies from a study with C2STEM in a
high school physics classroom. Section “Conclusions and
Future Work” discusses lessons learned from our analyses
and future extensions to C2STEM.

Synergistic Learning of STEM and CT

In this section, we briefly review recent work on introducing
computational approaches into STEM curricula, and then
present a learning by modeling approach to learning STEM
+ CT.

STEM + CT in K–12 Classrooms

Wing (2006) spurred researchers, educators, and
policymakers to introduce CT and CS as “a universally appli-
cable attitude and skill set” oriented toward solving problems
and designing solutions using computational methods (p. 33).
These skills include logical and algorithmic thinking, abstrac-
tion, problem decomposition, pattern recognition and gener-
alization, and debugging (error detection and resolution)
(Grover and Pea 2018). The 2012 Science Framework
(National Research Council, 2012) also acknowledged the
multiple connections among domains—“more and more fre-
quently, scientists work in interdisciplinary teams that blur
traditional boundaries” (p. 31)—and “consider connections
among science, technology, engineering, and mathematics”
(p. 32). Mandates for an education that prepares learners for
life and work—and specifically STEM + CT work—in the
21st century reflect this integrated STEM perspective
(NGSS Lead States 2013).

Computing and STEM share a deeply symbiotic relation-
ship (Grover and Pea 2018). There is evidence that specific
aspects of science learning accrue benefits from integration
with computing. For example, studying a phenomenon as a
step-by-step discrete time process and a sequence of events is
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easier for students to comprehend than continuous dynamics
representations (diSessa 2001; Sengupta et al. 2013; Sherin
2001). In addition, having to specify how to decompose a
model (e.g., separating upward and downward motions of an
object) and making decisions—such as, “Should the velocity
of an object stop at 0, or should It keep changing and go
negative?”—make assumptions more explicit and student
conceptions more visible. Last, visualizations through anima-
tion and plots afforded by simulating computational models
help learners judge the legitimacy of model constructs (Sherin
2001).

Computational modeling environments, such as CTSiM
(Basu et al. 2017), ViMap (Sengupta et al. 2015), and CT-
STEM (Jona et al. 2014), support synergistic learning of do-
main and CT concepts. These environments extend NetLogo,
a multi-agent programming language and authoring environ-
ment for building and simulating models of complex natural
and social phenomena (Wilensky and Resnick 1999). CTSiM,
ViMap, and CT-STEM provide a block-structured visual pro-
gramming environment as an abstraction layer over NetLogo
allowing students to focus on their modeling tasks, without
being overwhelmed by the NetLogo programming language
syntax. These systems have been successful in classroom
studies (e.g., Basu et al. 2017; Weintrop et al. 2016).

Learning-by-Modeling as a Framework for Synergistic
Learning

The leveraging of these key STEM + CT integration benefits
has been actualized through the use of a learning-by-modeling
pedagogical approach (e.g., Hambrusch et al. 2009).
Integrating CT and scientific modeling can be synergistic,
i.e., supportive of each other along multiple dimensions: (1)
reorganizing science concepts around intuitive computational
representations that introduce discrete and qualitative forms of
fundamental laws, which are simpler to understand than
equation-based continuous forms, lowers the learning thresh-
old for these concepts (Redish and Wilson 1993); (2) compu-
tational modeling can represent core scientific practices, such
as modeling, verification, and explanation (Soloway 1993);
and (3) contextualized computational constructs make it easier
to learn programming (Papert 1991). These benefits reflect the
framing of proficiency in both science and CT (as defined by
the Next Generation Science Standards [NGSS] and K–12
Computer Science Framework [2016], respectively), integrat-
ing knowledge and practice.

Learning-by-modeling in science can be looked upon as a
constructive model-building paradigm (Mayer 1999), where
students organize and convert their knowledge of science con-
cepts into computational structures that can be executed to
generate model behaviors. Additional features, such as step-
by-step execution linked to animations of model behavior and
plots of variable values as a function of time, provide scaffolds

for interpreting and understanding the modeled phenomena.
Therefore, learning-by-modeling environments support ex-
ploration by enabling learners to simulate and “play” with
their models and study their behavior under various
conditions.

Design Principles and the C2STEM System

This section outlines the design principles that govern the
architecture and the implementation of the C2STEM system.
This section also provides details of the curriculum modules
and the embedded and PFL assessments we developed for the
kinematics of motion domain.

Design Principles

Our design principles are directed toward developing an
OELE that provides a low-entry threshold for the synergistic
learning-by-modeling approach to developing STEM + CT
knowledge. We outline a number of these design principles
below.

Evidence-Centered Design

We use ECD (Mislevy et al. 2017) as an overarching frame-
work for systematically integrating the STEM + CT
disciplines and aligning the design of curricular activities
and assessment tasks. ECD promotes design coherence by
explicitly linking claims about student learning, evidence
from student work products, and design features of
instructional and assessment tasks that elicit the desired
evidence. Our approach extends one used by Harris et al.
(2016) to develop science assessments that integrate content
knowledge with science practices along NGSS dimensions.
We apply backward design methods (Wiggins and McTighe
2005) to develop instructional materials, where the design of
learning experiences focuses on the achievement of learning
outcomes. Figure 1 illustrates the process used to align the
curriculum sequence design and embedded assessment tasks
that integrate physics and CT. Like most design activities, the
process is iterative; early prototypes of curricular activities and
assessment tasks informed the refinement of the integrated
learning goals. Beginning with the target domain, i.e., compu-
tational modeling of kinematics phenomena for high school,
we conducted a domain analysis, which entailed a detailed
unpacking of the physics disciplinary concepts, CT concepts,
and computational modeling practices. Unpacking involves
elaborating key concepts and aspects of practice, defining
grade-band appropriate expectations for proficiency and
learning boundaries, identifying the prerequisite knowledge
and skills required to achieve proficiency, and articulating
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the evidence required to demonstrate the proficiencies associ-
ated with the practice.

Based on the mapping, we articulated a series of inte-
grated learning goals that combine aspects of physics, CT,
and computational modeling into assessable performance
statements. Figure 2 shows an example of how learning
goals arise from the unpacking elements. The integrated
learning goals constitute the claims we make about stu-
dents’ synergistic learning of physics and CT by engaging
in computational modeling. For each learning goal, we
also articulated an evidence statement describing observ-
able features of student performance that provide evidence
of proficiency with the learning goal.

The integrated learning goals and associated evidence
statements provide the basis for the design of the curriculum

unit and its embedded assessments, ensuring alignment be-
tween the two. The integrated learning goals serve as anchors
for a coherent sequence of instructional activities that integrate
physics and CTand help ensure that each activity focuses on a
small number of specific integrated learning goals.
Additionally, the learning goals and evidence statements con-
stitute the basis for assessment tasks that elicit the desired
evidence, and scoring rubrics that guide teachers and re-
searchers to attend to this evidence in students’ responses.

Domain-Specific Modeling Language

Previous work has outlined a number of challenges that
arise in implementing an integrative, learning-by-
modeling curricula (Basu et al. 2016; Grover and Basu

Fig. 2 Unpacking the physics and CT domains, identifying their relationships through integrated domainmaps, and the articulation of integrated learning
goals (bold text illustrates how a learning goal integrates concepts and practices across disciplines)

Fig. 1 Design process schematic for curriculum and assessment tasks that integrate science and CT learning
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2017). To address these challenges, C2STEM adopts a
block-based, physics DSML designed in coordination
with the ECD processes discussed above. For high school
physics, a DSML can play an important role in focusing
learner attention to the relevant physics concepts and
practices when building models and solving problems in
the domain. In addition to the affordance of developing
solutions at the level of abstraction of the target domain
(e.g., using variables relevant to the specific STEM do-
main), a DSML allows for the building of programs that
are concise and self-documenting by associating variables
with properties of objects, and using templates that let
learners set and update the variable values in discrete time
steps.

Model verification is supported by linking the execution of
the model blocks to the data generated, which can be repre-
sented as animations, plots, and tables. The DSML for kine-
matics helps students focus on the concepts of position, ve-
locity, and acceleration, and their relations. It also helps stu-
dents understand and interpret the computational constructs in
a context-specific way.

Exploratory Learning of Dynamic Processes

Like previous work (diSessa 2001; Klopfer et al. 2005;
Sengupta et al. 2013), our environment is designed for
students to build their computational models so that the
temporal evolution of a moving object’s behavior can be
represented using a step-by-step structure. In addition, be-
haviors can be decomposed into a set of fundamental pro-
cesses; e.g., the motion of an accelerating object is
modeled in two steps: (1) update the object’s velocity
using its acceleration and (2) update the object’s position
using its velocity. This approach facilitates model building
in parts. In addition, particular attention is given to Δt, the
simulation time step. Using different values for Δt stu-
dents can study its effects on the observed behavior of
an object, and this may help them understand the relation
between the chosen Δt and the continuous behavior of
objects.

The system supports exploratory learning (Hew and
Brush 2007; NGSS Lead States 2013) because students
can incrementally build, experiment, test, and refine their
models. In addition, the curriculum implements a progres-
sion that enables students to learn new physics and com-
puting concepts by building a series of models, where
new models add concepts and practices to previous
models. Students can explore with their models by vary-
ing parameters (e.g., the acceleration and initial velocity)
to study how this affects their model behaviors. We hy-
pothesize that these progressions facilitate guided
exploration, which allows students to develop a deeper
understanding of STEM + CT concepts and practices.

Preparation for Future Learning

C2STEM proposes that learning physics through computa-
tional modeling will not only support understanding of the
content being taught, but also positively influence future
learning of new STEM topics. This preparation for future
learning (PFL) perspective (Bransford and Schwartz 1999) is
a key design component of C2STEM curriculum and assess-
ments. In general, PFL assessments are simultaneously
summative: they occur near the end of a learning experience
and measure outcomes; and prospective: learning resources
are explicitly built into the assessment design and aim to mea-
sure what students are prepared to learn during the assessment.
In this way, they capture benefits of student-driven activities
that may not be captured by standard assessments, particularly
when students do not all generate a canonical solution (Chin
et al. 2010; Schwartz et al. 2011; Schwartz and Martin 2004).

PFL assessments adopt a double transfer paradigm
(Schwartz and Martin 2004). Part 1 is identifying what stu-
dents “transfer in” to help them learn from the resource. Part 2
is how well they can “transfer out” what they have learned
from the resource to correctly solve a target problem. In terms
of transfer in, there are two primary ways we might expect a
learning experience to shape how individuals approach new
problems and materials. One is by influencing the strategies
and learning processes they may remember and deploy in the
new context (Schwartz and Arena 2013). The other is that the
learning experience shapes students’ understanding of specific
concepts, such that they may be better able to expand on them
later (Grover et al. 2014).

C2STEM Learning Environment and Curriculum
Modules

We adopted the design principles to develop C2STEM as a
classroom learning environment for high school physics. Our
first DBR iteration with C2STEM was piloted in a controlled
environment with 15 students. This experiment pointed us to
difficulties that students had in understanding and applying
physics and CT concepts and practices when building and
developing their models. Sometimes, these difficulties led to
interesting discussions between students about their models
and the generated behaviors. However, very few students in
the pilot study used the data-capture tools to study the behav-
iors generated by the models. Instead, students focused on the
animations generated when they simulated their models, and
this often led to them using trial-and-error approaches to re-
fining the models. Lessons we learned from this pilot study,
including the difficulties that students faced, led us to better
integrate the data-capture tools, providing more opportunities
to perform more systematic exploratory analyses of model
behaviors and to provide an anchored context to give students
a context for each model-building task, and how the sequence
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of tasks led to the solution of an overarching problem
(Bransford et al. 2012).

Version 2 of the C2STEM system adopted a problem-based
learning approach (Torp and Sage 1998). Students were first
introduced to an overarching problem domain—transporta-
tion, in our case—and the overall challenge problem of deliv-
ering medicines to a tribe in a remote Amazon jungle. We used
evidence-centered design to decompose the overall curricu-
lum into four modules: three in kinematics: (1) 1D land trans-
portation involving constant acceleration and deceleration, (2)
2D constant velocity motion for transportation across a river,
and (3) 2D accelerated motion (with gravity as a factor) for
package delivery in a remote area using a flying drone. The
fourth module covered 1D and 2Dmotion with forces (includ-
ing static and dynamic friction).

To support classroom instruction, each topical module was
decomposed into sets of instructional, model-building, chal-
lenge, and embedded assessment tasks. Figure 3 illustrates the
interfaces for the instructional, model-building, and challenge
tasks. In each module, students worked through multiple
tasks, starting with introductory (instructional) tasks targeting
basic domain-specific (physics) and computational concepts.
Combined with the classroom teacher’s instruction, these
tasks helped students prepare to solve more complex model-
building tasks. In the classroom, this helped address potential
discrepancies in students’ prior physics knowledge and pro-
gramming experience. Exploration during instruction was im-
plemented as a form of guided inquiry. Students were asked to
change parameters of simulation models (hidden from them)
and evaluate physics relationships. For instance, in the instruc-
tional task for 1D constant acceleration, students were asked
to document the results of running their models with different
positive and negative initial values for acceleration and initial
velocity. Students were encouraged to use the graphs and data
tables to understand the relations between acceleration, veloc-
ity, and position of an object.

Following instructional tasks, students worked on model-
building tasks, where they combined their learned physics

knowledge with CT concepts and practices to build computa-
tional models of specified physics phenomena. For example,
in the model-building task illustrated in Fig. 3, students ap-
plied concepts of 1D acceleration and deceleration to model
the motion of a truck that starts from rest, speeds up to reach
and cruise at the speed limit, and then slows down to stop at
the STOP sign. In addition to the physics, students had to
figure out how to use conditionals to model stopping condi-
tions, e.g., when to switch from speeding up to cruise mode
and when to switch from cruise to slowing down mode. For
the latter, they had to model the “look ahead” distance (when
to start decelerating tomake the truck stop exactly at the STOP
sign). Students were told that they would get extra credit if
they created more general models, i.e., they used variables and
expressions instead of hard-coding values into their models.
Overall, the model-building tasks provided students with op-
portunities to translate their understanding of physics concepts
to computational structures using variables and update func-
tions to represent the system dynamics and to develop impor-
tant practices of verifying their models using systematic
debugging methods.

The challenge tasks that students worked on at the end of
each module were comprehensive and tested students’ abili-
ties to put together multiple concepts and practices to build a
computational model to solve difficult problems. For chal-
lenge problems, students had choice in how they went about
designing, developing, and testing their solutions, but with
sufficient constraints to meet the teacher’s instructional goals.

Finally, formative assessments or “check ins” (elaborated
further in section “Assessment Design”) were designed to
evaluate and make students aware of the physics and CT con-
cepts and practices they would encounter in their modeling
tasks.

C2STEM adopts a modular architecture, is web-based and
deployed on a cloud-based server, allowing for ubiquitous and
continuous access through web browsers and Internet re-
sources. Our computational modeling environment and some
of the instructional tasks are developed on top of NetsBlox

Fig. 3 Example instructional, model building, and challenge tasks with solutions
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(Broll et al. 2016), an extension of the Snap! programming
environment with added simulation and physics DSML
blocks to help learners focus on physics modeling and simu-
lation tasks. As discussed, we added graphing and data table
tools to version 2 of C2STEM.

Assessment Design

We have developed three types of assessments for our physics
curriculum: summative pre-post tests and PFL assessments,
and formative embedded C2STEM check-ins.

Pre-Post Test Assessments

We designed this assessment to measure students’ conceptual
knowledge in physics and CT by adapting assessment items
from other studies (Basu et al. 2017; Grover et al. 2017;
Hestenes et al. 1992; McElhaney and Linn 2011). The instru-
ment contained 10 physics items and 7 CT items in multiple
choice and constructed response formats.

Embedded Assessments

We developed multiple assessment tasks to measure students’
integrated proficiencies in kinematics and CT. We combined
kinematics and CT concepts and computational modeling
practices to reflect their synergistic nature. For example, cal-
culating the velocity of an object based on its initial velocity,
acceleration, and time closely relates to the CT concepts of
initializing and updating variables (velocity, acceleration, and
time are examples of variables), operators, and expressions.
Additionally, combining the related physics and CT concepts
with different aspects of CT practices, such as “Develop, Use,

Test, Debug,” helped create learning goals that guided task
design specifications at different levels of complexity.

We developed 18 tasks of varying complexity aligned with
our learning goals using multiple choice, open response, and
programming formats. In some tasks, we provided most of the
code and asked students to fill in a small part that targeted a
specific concept, while in other tasks, we provided required
blocks and asked students to focus only on arranging the
blocks in a correct computational sequence. We created dif-
ferent versions of debugging tasks, such as asking students to
correct a given buggy program, showing students a program
snapshot and asking them to modify the block(s) to produce a
correct model, and asking students to find modeling errors by
studying data and graphs from a program not shown to them.

PFL Assessments

In PFL assessments, learning resources are explicitly embed-
ded into the assessments, and we can examine how students
approach new learning situations. In designing PFL assess-
ments for C2STEM, we aimed to capture problem-solving
strategies and conceptual understanding that a CT-based ap-
proach would help foster and that could be useful for learning
in other STEM contexts. For example, within C2STEM, stu-
dents take an iterative step-by-step approach to make sense of
a continuous change. We coded for this step-by-step strategy
when examining students’ responses to assessments that in-
clude new learning resources students had not encountered
before. We also analyzed how students may generalize con-
ceptual understanding of the relationships between position,
velocity, and acceleration to make sense of jerk, the rate of
change of acceleration. Figure 4 presents an example PFL
item developed to assess students’ preparation to learn the

Fig. 4 PFL item providing introduction to jerk
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concept of jerk. Jerk was chosen as a near transfer item, as it is
a natural extension of a kinematics curriculum and rarely in-
cluded in traditional physics instruction.

Classroom Study

We outline our study design and measures in this section.

Study Design

Following the initial usability study and the revisions to the
system discussed in section “C2STEMLearning Environment
and Curriculum Modules”, our team conducted a semester-
long classroom study in a high school physics classroom in
Tennessee. The study included 174 students taking an Honors
Physics course; 84 students participated in the experimental
group and used our C2STEM system and curriculum. They
had some traditional lectures, but most classroom activities
combined lectures with the use of C2STEM. Students re-
ceived homework grades (predominantly completion grades)
for C2STEM tasks assigned as homework and for embedded
assessments. The 90 students in the control group got tradi-
tional instruction through classroom lectures and labs. All
sections were taught by the same teacher and followed the
same general syllabus. The C2STEM instruction was molded
to ensure that nearly equal time was allotted to the physics
syllabus for both groups. In addition, all students’ grades in
the course were based on the same set of assessments designed
by the teacher. These assessments were given to us prior to the
study and impacted the design of our instructional and embed-
ded assessment tasks.

In this paper, we evaluate student work on the three kine-
matics modules that primarily covered Newton’s first and sec-
ond laws of motion: 1D motion (with acceleration), 2D mo-
tion with constant velocity, and 2D motion with gravitational
forces. Control and experimental groups completed all pre-
and post-tests as well as the teacher-created conventional
paper-and-pencil classroom assessments separate from the
C2STEM environment.

Participants

We analyzed data for 34 of the 84 experimental group students
who returned their student and parent permission forms. We
formed a subsample of control group students (matched con-
trol group) to make robust comparisons between the control
and experimental groups. The matched control group of 34
was drawn in a way that the distribution of kinematics pre-test
scores (see section “Pre-Post Learning Gains”) of the
C2STEM students were about the same. For each student in
the C2STEM group, a control group student was randomly
selected (1) whose kinematics pre-test score was within a

certain range (r) of the C2STEM group score, i.e.,
control_studenti score~[treatment_scorei–r, treatment_scorei
+ r], and (2) who had also completed the post-test and the
PFL assessment. Twenty-seven of the 34 C2STEM students
provided responses to the PFL item.

Data Sources and Analysis

We used multiple assessment methods (section “Assessment
Design”) to study students’ learning performance and
problem-solving approaches.

Pre-Post Test Assessments

Two graders initially scored 6 randomly selected pre- and
post-tests together, using a pre-defined rubric to establish a
baseline scoring scheme. The graders then scored 10 random-
ly selected tests separately and produced an inter-rater reliabil-
ity of 89% across all of the test items. A single scorer graded
the remaining tests and computed total scores for the physics
and CT pre- and post-tests. The max score attainable was 40
for physics, and 37 for CT. We used a regular t test to deter-
mine if there were significant differences in the normalized
learning gains for the two groups. The normalized learning

gain for a student was computed as: post test score–pre test scoreð Þ
max score–pre test scoreð Þ :

The normalized learning gain is number in the range [0, 1].

PFL Assessments

For the question discussed in section “PFL Assessments”,
students’ answers were coded for problem-solving approach
and correctness of response. Two researchers coded a subset
of 40 responses independently. Discrepancies were discussed,
and the responses were re-coded. Comparison of codes from
the final iteration yielded 90.4% agreement. We found that
students used two primary problem-solving strategies: (1) ap-
plication of kinematics equations and (2) iteratively solving
for acceleration, velocity, and position using the step-by-step
approach. If the C2STEM students used more step-by-step
strategies, this would provide evidence of transfer of learning
processes. If they had less negative transfer of traditional ki-
nematics equations, recognizing that these equations did not
account for the change in acceleration from jerk, this could
provide evidence that these students’ conceptual understand-
ing of rates of change enabled them to reason about and gen-
eralize to a new, more complex situation.

Embedded Assessments

Our analysis of students’ responses to the embedded assess-
ments was conducted as a case study using three specific
assessment tasks from the curricular modules. The analysis
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illustrates the extent to which students demonstrated evidence
of synergistic learning between physics and CT, as well as
how students may have struggled to integrate the two do-
mains. Each of the three task rubrics scored students’ final
programming solutions on two aspects of integrated physics-
CT proficiency: (1) the ability to express physics relations in a
computational model and (2) the ability to use programming
constructs to model a physics phenomenon.

Video Analysis

We recorded student work and conversations using OBS™
screen-capture software to capture key synergistic learning
events. We analyzed the videos qualitatively to characterize
students’model-building approaches and challenges. For each
task, we noted key actions and conversations that highlighted
synergistic learning events.

Results and Discussion

We discuss the results of our analyses in this section. In rela-
tion to our DBR approach (section “C2STEM Learning
Environment and Curriculum ModulesS23”), we made two
key study changes: (1) data tools were added to help students
interpret how variable values changed over time and (2) in-
structional tasks and embedded assessments were modified to
make the links between the physics equations and the compu-
tational modeling structures more explicit. In the context of a
semester-long classroom study, the graphing tool was used by
our teacher for classroom discussion. He often projected the
results of model simulations on a SmartBoard© to explain
model behaviors in relation to the laws of motion. This proved
especially useful when the instructor found that the experi-
mental group students were having trouble using equations
to solve the traditional assessment problems in his classroom
quizzes. Once students had developed proficiency in using

and interpreting graphs, the teacher helped them connect the
generated graphs with the traditional kinematics equations.

Pre-Post Learning Gains

The students’ kinematics and CT pre-post test scores are
shown in Fig. 5. For kinematics, the experimental group av-
eraged a score of 21.12 (sd = 6.16) on the pre-test, improving
to 29.82 (sd = 4.67) on the post-test. The corresponding aver-
age scores for the control group were 22.71 (sd = 5.29) and
27.79 (sd = 5.79). For CT, the experimental group averaged
scores of 20.71 (sd = 4.88) and 25.82 (sd = 7.58), and the
control group averaged 21.18 (sd = 7.64) and 23.29 (sd =
6.25), respectively. The t test analysis on learning gains
showed significant improvements for both groups in kinemat-
ics (experimental: p = 9.38 × 10−9, control: p = 0.0003). In CT,
the experimental group had significant learning gains (p =
0.002), but the control group did not (p = 0.22), which was
not unexpected. A t test comparison of the normalized learn-
ing gains showed that the experimental group performed sig-
nificantly better in kinematics (p = 0.01) and CT (p = 0.008).

A more detailed analysis of specific physics questions also
indicates key learning gains for the experimental group as
compared to the control group. In one question, students had
to choose the plot that correctly depicted the free-falling mo-
tion of a ball subjected to gravity (constant acceleration—see
Fig. 6). This tested students’ ability to interpret the step-by-
step motion of the free-falling ball. On the pre-test, 12 exper-
imental group and 7 control students answered this question
correctly. On the post-test, 28 experimental and 17 control
students selected the correct answer. Therefore, step-by-step
modeling seems to have helped the students in the experimen-
tal group gain a better understanding of constant acceleration
motion.

In the CT domain, the experimental group’s ability to de-
bug their models improved significantly. Students were given
the snippet of code depicted in Fig. 7 and asked to describe

Fig. 5 Group results for kinematics and CT pre-posttests
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how they would fix the code to accurately model a ball’s
horizontal motion to the right for 20 m at a constant velocity
of 2 m/s. The correct solution required students to move the
“set x position to 0 m” initialization block outside of the “re-
peat until” loop block. In the pre-test, only 2 experimental
group students got the right answer, but 17 students had the
correct answer on the post-test. In contrast, the number of
correct answers for the control group increased from 6 to 8.

PFL

Open-ended student responses to the PFL question (Fig. 4)
were coded for their problem-solving approach and final an-
swer correctness. We found two primary problem-solving
strategies: application of kinematics equations, and iteratively
solving for acceleration, velocity, and position using the step-
by-step approach. In the first case, students either applied the
standard kinematics equations without accounting for chang-
ing acceleration (an example of negative transfer) or recog-
nized the need for extending the formulae in some way to
include jerk. The second case was evidence of students’
step-by-step thought process, which we anticipated to be a
more CT-inspired strategy that was supported within
C2STEM.

Student answers were also coded for correctness. As the
correct answer to this problem can only be achieved using
integral calculus1 or a small Δt, student responses were instead
assessed on a range of “reasonableness.” This range was de-
fined as 25–52m, using the minimum andmaximum displace-
ment values one could posit based on the acceleration value at
1-s intervals. The answer a student would obtain by applying
standard kinematics formulae without accounting for jerk is
outside this range. We found that students in the matched-
control group were more likely to negatively transfer and ap-
ply the standard kinematics equations without accounting for
jerk: 14 (41%) of the matched-control students made this error
in solving the problem, while only 7 (26%) of the experimen-
tal students made this error. Very likely, these students did not
recognize the limitations of the standard kinematics formulae
for situations involving jerk, or they could not find an alternate
strategy. In contrast, the experimental students implemented
more flexible problem-solving strategies than their matched-
control counterparts. Seven (26%) students in the experimen-
tal group used a step-by-step approach to solve the problem,

while only 5 (15%) of the control student responses show
evidence of the same strategy. Twelve (45%) of the experi-
mental group students tried to adapt the traditional formula,
compared to 8 (23%) of the control students. A comparison of
student strategies is displayed in Fig. 8.We combined students
who used either the step-by-step or the extension approach
into a single “flexible strategy” category. When comparing
the treatments and problem-solving strategies (formula vs.
flexible), we find a non-significant trend that C2STEM stu-
dents use the flexible strategies more frequently (χ2 = 3.44, p
= 0.064). In terms of reasonableness of answer, the differences
between groups were small and non-significant. Across both
conditions, 6 students in each group (18% and 22% of the
control and experimental groups, respectively) gave answers
that met our criteria of being in the reasonable range.

Case Studies

We adopted an explanatory case study approach (Gomm et al.
2000) to examine how the environment, our design principles,
and associated curriculum helped foster synergistic learning of
physics and CT in practice, and how it supported students’
transfer of modeling strategies. In this paper, we consider
two illustrative cases from the experimental group: John and
Amy (names changed to maintain anonymity). We chose John
and Amy based on their performances on the pre- and post-
tests, select embedded activities (one from each of the mod-
ules 1–3), and the PFL task.

Embedded Check-Ins

John started with relatively high pre-test scores in physics (29
out of 40) and CT (25.5 out of 37) and exhibited learning gains
in both domains (physics post score = 35 and CT post score =
30.5). John performed consistently well on the embedded as-
sessment tasks across modules 1, 2, and 3 and was also suc-
cessful in applying the strategies he learned in C2STEM to the
PFL task. Figure 9 provides a snapshot of John’s submission
for Check-In 1.1.1. John correctly arranged the given blocks
to simulate the motion of an object traveling horizontally at a
constant velocity of 0.5 m/s till it reached an x-position of 20
m. This demonstrates his understanding of and proficiency
with the DSML blocks and the step-by-step modeling of ob-
ject behaviors. He correctly separated out initialization actions
from actions that needed to repeat at every simulation step to
model the dynamic behavior, and correctly constructed the
stopping condition.

Similarly, for Check-In 2.1.1, John correctly modified the
given program to model the object’s motion starting at Point B
(Fig. 9). John’s solution satisfied all six criteria across the
rubric components. He showed a good understanding of rela-
tive velocity by modifying the procedure “set-Josh-resultant-
velocity” to correctly model Josh’s new velocity beyond Point

1 At the time of the study, no students in either condition had received integral
calculus instruction.

Fig. 6 Options for ball drop, kinematics pre-posttest question
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B as the sum of the walkway speed and his walking speed.
John correctly separated the initialization and update actions,
and correctly model the update position actions in the code.
His model did not include extraneous code, implying that he
had a good understanding of the required CT concepts.

John continued to demonstrate proficiency in Check-In
3.1.2, which dealt with acceleration due to gravity, and the
relation between velocity and acceleration. He was successful
in debugging the erroneous model to correct the initial y-
velocity of the ball dropped from a height of 20 m, and he
correctly initialized the y-acceleration to − 9.8 m/s2. He also
had the correct expression for the y-velocity update at every
simulation step. His final program submitted for this task (see
Fig. 9), as well as his written explanation for how he debugged
the program, provide evidence of his understanding of the
relations between velocity, acceleration, position, and time,
which he subsequently transferred and extended in the PFL
task about jerk.

On the other hand, Amy represented a student who started
out with low tomedium physics and CT pre-test scores (25 out
of 40, and 22 out of 37, respectively) and showed considerable
learning gains in both domains (physics post-score of 34, and
CT post-score of 30.5). Though Amy’s post-scores were sim-
ilar to John’s, Amy, unlike John, did not perform consistently

well on the embedded assessment tasks. She struggled with
module 1, showed some improvement module 2, but again
struggled with the physics concept of acceleration due to grav-
ity and the CT practice of debugging in module 3, which was
consistent with her response on the subsequent PFL task.

Figure 10 depicts Amy’s solution for Check-In 1.1.1.
Consistent with her low pre-test scores, she struggled with
organizing the blocks provided into the correct model. Her
initial model terminated the simulation after initializing posi-
tion and velocity, making the rest of the code unreachable.
Amy also struggled with other embedded assessment tasks
in module 1 that involve code comprehension, development,
or debugging. She showed some improvement in module 2
and generated the correct solution for Check-In 2.1.1,
updating the object’s speed on the walkway to 2.5 m/s instead
of 0m/s (see Fig. 10). This showed evidence of progress in her
ability to develop a physics computational model. However,
in Amy’s response to Check-In 2.1.1, she hardcoded the re-
sultant velocity value instead of expressing Josh’s resultant
velocity as the sum of the variables.

In Check-In 3.1.2, Amy was unable to express the physics
relations between position, velocity, and acceleration. Also,
she showed no proficiency in applying CT-related debugging
practices. Figure 10 shows that she could not correct the initial

Fig. 8 Comparison of PFL
response strategies

Fig. 7 Code snippet for
debugging pre-posttest problem
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velocity and acceleration, or write down the expression
for updating the y-velocity at every simulation step.
However, she was able to make the correction to spec-
ify that the change in y-position should be in the neg-
ative direction by multiplying the given expression by −
1. She made the same mistakes in this task and the PFL
assessment, where she updated the position by the value
of acceleration, implying that she did not understand the
relation between velocity and acceleration. Her lack of
knowledge of the physics relations may have added to
her struggles with debugging. Amy consistently
displayed lack of proficiency with the CT practice of
debugging in various assessment tasks, and this was
consistent with her low scores on the debugging task
in the CT post-test.

In trying to reconcile Amy’s high post-test scores with
her struggles in the embedded check-ins, it is likely that
Amy was unable to translate her physics knowledge to an
understanding of the DSML constructs and their purpose
to support model building. She had difficulties in under-
standing the simulation model structure (i.e., variable ini-
tialization followed by the repeated step-by-step update of
variable values to model dynamic behaviors). On the CT
summative assessment, students were required to correctly
insert the “change” block in a given code segment to
correctly update the behavior of the object. Amy was un-
able to do so on both the pre-test and post-test. In addi-
tion, she did not learn the debugging process. She did not
attempt the task in the pre-test, and scored zero points on
both sub-parts of the task (describing the buggy behaviors,

Fig. 9 John’s checkin solutions
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and steps to debug the program) in the post-test. Her
interactions with others and her responses indicate that
she did not understand the DSML blocks, for example,
that the change x-position block did not working correctly

without the velocity variable block. It is clear that Amy
needed additional scaffolding to overcome her difficulties
and better learn the curricular physics and CT concepts
and practices.

Fig. 10 Amy’s checkin solutions

Fig. 11 John’s (left) and Amy’s (right) responses to the PFL item

J Sci Educ Technol (2020) 29:83–100 95



PFL

John’s response to the PFL item (Fig. 11, left) used the step-
by-step strategy to achieve a reasonable final answer. He used
the initial conditions provided in the problem statement to set
up a graph of displacement as a function of time. In one-
second time intervals, he found the acceleration, velocity,
and displacement and then filled in the graph.

1ð Þa1 ¼ a0þ j; 2ð Þ v1 ¼ v0þ a1; and 3ð Þ x1 ¼ x0þ v1

This clearly exhibits both parts of the double transfer par-
adigm: John had transferred in a strategy, and successfully
applied it to solve the problem, finding a reasonable way to
make sense of the new quantity introduced in the assessment.

In contrast, Amy’s strategy (Fig. 11, right) was less clear,
and the final answer was not within the reasonable range. Her
drawn number line appears to represent the position of the
vehicle on the track, as indicated by the starting value of 3
m. Demarcations along the line may indicate that she was
attempting to analyze the problem in discrete time intervals,
but the intervals were not explicitly identified. Amy tried to
include jerk in the problem by first expressing the numerical
value for jerk (2 m/s3) as the change in acceleration over time.
In this sense, she recognized that this situation presented a
new problem context that went beyond what she had been
taught. However, she could not successfully incorporate jerk
into her final answer. Amy’s next calculation conflated accel-
eration with the change in acceleration, and she used the initial
value of acceleration and the total time interval to compute a
new quantity. Her tentative hold on the physics concepts was
also manifested in her final response. From the number line,
she appeared to take the initial position and add to it the value
of the initial acceleration three times, bypassing velocity, i.e.,

xf ¼ xiþ 3ai:

Unlike John, Amy could not transfer in the strategies and
physics understanding to extend her understanding of the re-
lationships between position, velocity, and acceleration to
make sense of this new, more complex scenario. However,
she did bring in some of the concepts she had learned to
facilitate her sense-making.

Video Analysis

Our assessments allowed us to establish whether synergistic
learning occurred, but to gain a better understand how such
learning occurs, it is important to examine students’ moment-
to-moment activities in C2STEM.When are students learning
or applying concepts or practices of physics? When are stu-
dents learning or applying CT concepts or practices? When is
their learning of physics and CT mutually reinforcing?

To address these questions, we analyzed audio and vid-
eo captures of a subset of computer screens in the class-
room. Our findings show that moments of synergistic
learning were supported by the C2STEM environment,
often in unanticipated ways. We noticed several varieties
of synergistic learning moments: (1) using a simulation to
test a conceptual issue, (2) debating whether the model
should capture the mechanism of the phenomenon, and
(3) debugging a program that is not behaving in the ex-
pected or intended way. For all three varieties of syner-
gistic learning, students encountered such moments while
pursuing emergent goals as they engaged with model-
building challenges within the C2STEM environment
and curriculum.

Debugging was the most prevalent of the three types of
identified moments of synergistic learning. Every student en-
countered the need to debug their models at various points,
whenever the behaviors did not match their expectations.
Such moments often invoked students’ conceptual under-
standing of physics (e.g., object is not accelerating when it
should) through engagement in the practices of physics (e.g.,
refining a model based on observational evidence), all while
debugging the model code, a key CT skill.

As an illustrative example, we present the case of a
debugging episode fromAmy. This episode comes frommod-
ule 3, where students were tasked with building a model of a
drone flying with a constant velocity with two packages, and
dropping one package onto a target on the ground, and the
second package onto an elevated target. On day four of mod-
ule 3, Amy started with a program she had already compiled in
a previous session. In Amy’s model, package 1 moved for-
ward with the drone at a constant horizontal velocity and
maintained that constant horizontal velocity after it was
dropped while also accelerating in the y-direction. However,
there were two main problems Amy noticed with her model:
(1) package 1 did not quite reach the target and (2) package 2
did not move with the drone at all, but rather remained at rest
in the air.

Amy articulated the problem several times that package
2 was not moving with the drone, but did not make prog-
ress on that problem immediately. Before she could work
on these problems, other issues took priority. First, the
instructor had all the students adjust the initial positions
of their drones and packages. Then, the students did some
paper-and-pencil work to determine the correct x-position
for the drone to release each of the packages to hit their
respective targets. After computing her drop points on
paper, Amy returned to the C2STEM environment to ad-
just the release point of package 1. It hit the target on the
first subsequent run of the simulation. However, there was
still the problem of package 2 not moving at all with the
drone. Amy articulated that this was a problem she was
orienting to, and asked for help:
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Amy: (looking at another student’s code) What code is
that? Is that the drone?
Student: Uh, yeah, and the packages.
Amy: This is what she—this is like what I did with Liz.
Yeah, the drone moves, but it doesn’t, like, I—This is the
one that’s not moving. It drops it here.
Student: Well, you gotta get all the packages to move.
Amy: I think something is cancelled in the y... (inspects
student’s code, then adds “change x-position of package
2” block to her own code)

With the help of some neighboring students, Amy engaged
in a debugging process in which she realized she was missing
a “change x-position of package 2” block of code. She added
that code, but had inadvertently changed the velocity of the
drone in the process (demonstrating that novices often make
new bugs during the debugging process, as reported in
McCauley et al. 2008).

On subsequent tests, package 2 started moving, but not at
the same velocity as the drone. Amy again asked for help. As
neighboring students offered suggestions, Amy honed in on
the drone’s velocity block as the problem and adjusted the
velocity initialization to match that of the drone. This led to
a successful landing of both package 1 and package 2 on the
subsequent “Run.”

Overall, the video analysis complements Amy’s perfor-
mance on the pre-and post-tests, on which Amy exhibited
overall CT and physics pre-post learning gains. Specific areas
of improvement in CT include variable initialization (deter-
mining correct values and purpose of variable) as well as
interpreting sequences and conditions to predict results.
These results coincide with the video results. Amy was able
to initialize needed variables (CT) and demonstrated an un-
derstanding of what the simulation should look like (physics).
However, as the CT application became more difficult, errors
in debugging occurred. Her struggles in debugging and over-
reliance on her peers could explain her low pre-post gain on
the debugging task. The video analysis also reveals a potential
misunderstanding regarding either the DSML blocks or the
step-by-step dynamic motion. For instance, Amy considers
that “something is cancelled in the y,” regarding an issue with
the motion of the object in the x-direction. The video data
corroborate her difficulties interpreting DSML blocks in the
embedded check-in assessments.

This case study of Amy’s in-the-moment engagement with
C2STEM highlights how it can support students’ synergistic
learning of physics and CT. In attempting to solve the chal-
lenge task, Amy was afforded authentic opportunities to en-
gage in the practices of physics (revising a model based on
observational evidence) as well as the practices of computa-
tion (debugging and problem decomposition). In resolving the
unexpected problems with her model, Amy used her under-
standing of relative velocity between the drone and the

package to identify the problematic code and make correc-
tions. One interesting finding is that Amy’s debugging was
supported in-the-moment not only by C2STEM, but also by
her peers who collaborated with her in debugging her code.
Ultimately, she may have relied so heavily on her peers that
she did not learn how to debug code on her own. We plan to
examine a collection of video case studies to characterize the
varieties of synergistic learning moments, to analyze how
C2STEM supports such moments, and to inform future itera-
tions of C2STEM’s support of such moments.

Conclusions and Future Work

This paper presents a comprehensive approach to integrating
STEM and CT using the affordance of a computer-based
learning environment. Building on prior approaches (diSessa
2001; Klopfer et al. 2005; Lee et al. 2014; Sengupta et al.
2013; Sherina et al. 1993; Yoon et al. 2018), we designed this
version of C2STEM specifically to engender exploratory ex-
periences, where students build computational models of sci-
ence phenomena; analyze, verify, and refine their models; and
then apply their models to problem-solving tasks within the
framework of a classroom instructional environment. This pa-
per presents the theoretical framing for synergistic STEM +
CT learning, articulates a set of design principles that facilitate
synergistic learning of STEM and CT, and presents the results
of a study conducted in conjunction with a high school phys-
ics teacher in which we applied these principles to implement
C2STEM to support high school physics learning.

Our initial results are promising: students working with
C2STEM developed a better understanding of concepts and
practices of physics and CT than students who learned
through a traditional curriculum. In particular, our analyses
show that students using a step-by-step model-building ap-
proach did better in understanding and applying the primary
kinematics concepts of position, velocity, and acceleration,
while also developing model decomposition, refinement, and
debugging skills—all important practices for modeling and
problem solving in STEM domains and developing CTexper-
tise. Students also demonstrated abilities to transfer and ex-
tend concepts and problem-solving skills to new problem-
solving situations.

Overall, students seemed to be more motivated and worked
harder on their physics tasks, even when they had difficulties.
For example, John, whose work we described earlier, wrote to
his teacher “. . . The most memorable time from this past year
were [sic] during the programming segment. While a number
of students absolutely despised this teaching method, it hon-
estly helped me gain a deeper understanding of the subject
matter, and this understanding helped me assist other students
in learning the environment as well. I spent time in and out of
class helping out and explaining the concepts to my peers, and
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spending this time deepen [sic] our understanding of physics
and personal bonds . . .” Other students remarked that the
ability to execute their models and see immediate results made
them work harder to construct correct physics models.

But a number of students had difficulties, as John remarks
above, and as Amy exemplified. Amy relied heavily on her
classmates to help her interpret her physics concepts in a com-
putational modeling framework, and then to debug her
models. Analysis of the data is pointing us to a number of
conceptual difficulties that students encounter in using the
C2STEM system, and in learning the physics and CT.
Continuing with our DBR approach, we will use this informa-
tion in the next step of iterative redesign and reimplementation
of the C2STEM interfaces and curriculum. We will also de-
sign adaptive scaffolding mechanisms to help students with
the specific difficulties they encounter during their model-
building tasks.

Applications of our design principles provided useful in-
formation to support system improvements. Our approach for
using ECD was novel in that it supported the coordinated
design of system development, curriculum, and embedded
assessments that proved useful in identifying misunderstand-
ings related to domain and modeling knowledge. The explor-
atory learning of dynamic behaviors principle proved effective
compared to the control group in post-test performance (in-
cluding the ball-drop question from section “Pre-Post
Learning Gains”) and with regard to our PFL design principle
and student performance on the PFL assessment. Anecdotally,
students submitted a feedback form at the end of the semester
in which they were asked to describe what they liked or did
not like about the learning-by-modeling approach. Responses
included, “It helps explain why what happens, happens,” “It’s
nicer than memorizing equations,” “Being given a scenario
instead of just numbers was easy for me to see what is hap-
pening and how it needs to work,” and “I understand how to
use physics in a more real-world level instead of just in a
classroom.” This clearly illustrates that our approach goes
beyond typical textbook approaches, and allows students to
apply and practice domain principles, solve complex prob-
lems, explore and inspect their solution processes, and rethink
and revise their solutions based on feedback provided by the
system.

However, not all feedback was positive. One student noted
that “I think I would have learned better with [the teacher] just
talking to us and us taking notes, although it wouldn’t have
been as much fun,” adding that we should “actually teach how
to code—like the basics and what all the blocks and variables
mean.” This response relates to potential issues regarding our
DSML design principle. Amy’s struggle with the DSML in-
dicates that wemay not have done enough in terms of teaching
to or providing resources on the physics DSML. As a result,
we aim to evaluate and redesign our introduction to the sys-
tem’s blocks, connecting descriptions to the visual simulation

to address barriers that students with lower initial CT perfor-
mance may have.

Limitations of Our Work

There is a tension between the learning goals of STEM and
CT that will be present in any attempt to integrate the two.
Moreover, there is a tension between the goals for students to
learn content and to engage in authentic practices of the
STEM discipline through exploration. C2STEM is an attempt
to find ways to navigate these tensions such that the learning
of content and practices of both STEM and CT mutually re-
inforce each other. This requires finding a balance between
allowing students the freedom to explore multiple solution
paths and scaffolding students in learning particular concepts
that other concepts depend on. How to best navigate these
tensions depends on the instructional context and requires
constant vigilance.

Other attempts to integrate STEM and CT into a computer-
based learning environment have involved more free explora-
tion when compared with C2STEM (e.g., diSessa, 2001;
Sherina et al. 1993). This is largely due to a different instruc-
tional context, including different pedagogical goals. For ex-
ample, diSessa (2001) worked with elementary school stu-
dents who were given the option to play with Boxer during
their free period, taking turns on a small set of computers. In
that context, the students independently generated an impres-
sive diversity of explorations and designs. In contrast,
C2STEM is an attempt to integrate CT into intact high school
physics classes, thereby emphasizing curricular content goals.
We had to find a balance that involved providing more scaf-
folding for all students to learn specific physics concepts.

In our high school study, we found evidence that our bal-
ance was not always ideal. For instance, after the C2STEM
students had engaged in several kinematics modeling tasks, an
in-class quiz revealed that they were falling behind their coun-
terparts in their ability to use the kinematics equations to solve
problems on paper. In response, the instructor provided more
explicit connections between the students’ code, graphs, and
the kinematics equations, and the post-test results suggest that
this adjustment was successful in getting those concepts
across. However, these sorts of adjustments may have tipped
the balance too far away from student-led exploration as evi-
denced in the video case study (e.g., Amy’s reluctance to
independently explore and debug her code). In future work,
we will explore the dynamics of how different models of pro-
viding instructional scaffolding influences students’ content
learning as well as their spirit of exploration.

Implications and Future Work

C2STEM demonstrates an effective, learning-by-modeling
approach for the simultaneous learning of physics and CT in
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existing physics classrooms. Our semester-long study illus-
trates benefits, limitations, and potential improvements for
those interested in integrating modeling, and specifically CT
concepts and practices, at the high school level while still
ensuring learning of the STEM domain. As part of our DBR
process, we hope to expand our system by advancing inquiry
and exploratory learning opportunities, allowing for more cus-
tomization of the DSML blocks, and enhancing collaboration
opportunities. In our next DBR iteration, we will incorporate
these lessons learned to develop a conceptual modeling phase
in the environment that will provide students with the oppor-
tunity to perform more exploration using inquiry and experi-
mentation tasks that direct the students to think more about the
conceptual structure of their models (both from a domain and
computational viewpoint) before they embark on their com-
putational model-building tasks.
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